Supplement S 3. Model 1 equations and parameter estimates for all dopamine D2 antagonists. To describe dopamine and antagonist binding to the D_2 -receptor, a simple drug-target binding model with competition between antagonist and dopamine was developed. This model assumed a constant total receptor concentration. This was represented as a single conservation equation of total receptor (R_t), where the receptor can have 3 different states: free receptor (R_t), antagonist bound to receptor (R_t) and dopamine bound to receptor (R_t). Receptor recycling (R_t) was added to this model as well, which describes internalization of the receptor-agonist complex, dissociation of this complex return of the free receptor to the cell membrane. This model is given by the following equations (equation 1-5): $$\frac{d[L]}{dt} = -k_{onL}[R][L] + k_{offL}[RL]$$ $$(Eq. 1)$$ $$\frac{d[DA]}{dt} = -k_{onD} [R][DA] + k_{offDA}[RDA] + RR[RDA]$$ $$(Eq. 2)$$ $$\frac{d[RL]}{dt} = k_{onL}[R][L] - k_{offL}[RL]$$ $$(Eq. 3)$$ $$\frac{d[RDA]}{dt} = k_{onDA}[R][DA] - k_{offDA}[RDA] - RR[RDA]$$ $$(Eq. 4)$$ $$[R] = [R_t] - [RL] - [RDA]$$ $$(Eq. 5)$$ In these equations, [L] represents the free antagonist concentration, [DA] represents the free dopamine concentration, [Rt] represents the total receptor concentration, [R] represents the free receptor concentration, [RL] represents the concentration of the receptor—antagonist complex and [RDA] represents the concentration of the receptor—dopamine complex. k_{onL} and k_{onDA} represent the second-order association rate constants of receptor with the antagonist and with dopamine, respectively. k_{offL} and k_{offDA} represent the first order dissociation rate constants of the antagonist and dopamine from the receptor-bound complex, respectively. The receptor binding part of the model as described above was connected to cAMP concentrations in a mechanistic manner according to the following equations (equation 6 and 7). $$\frac{d[cAMP]}{dt} = \left(k_1 + \frac{k_{0,max}[RL]^n}{EC50^n + [RL]^n}\right) \left(1 - \frac{[RDA]^n}{IC50^n + [RDA]^n}\right) - k_2[cAMP] - k_3[cAMP][PDE]$$ (Eq. 6) Here, $k_{0,max}$ represents the maximum rate constant for inverse agonism by the receptor-antagonist complex, where n is the hill coefficient. Additionally, k_1 represents the rate constant for baseline synthesis of cAMP by adenylyl cyclase. Furthermore, the total cAMP synthesis is inhibited by the receptor dopamine complex (RDA) in a nonlinear manner, where n is the hill coefficient as well. k_2 is the rate constant for cAMP elimination independent of active PDE, and k_3 is the rate constant of active PDE-mediated cAMP elimination. active PDE synthesis is dependent on the cAMP concentration, and active PDE degradation is determined by the first order rate constant k_5 as in equation 7. $$\frac{d[PDE]}{dt} = k_4[cAMP] - k_5[PDE]$$ (Eq. 7) Table S 3. Parameter estimates from fitting the final model to the cAMP response data. Asterisks indicate parameter values that were not estimated but used as input parameter values. DAFR₅₀ denotes the ratio of the total receptor concentration divided by the dopamine-bound bound receptor concentration that inhibits the cAMP synthesis to 50%, LFR₅₀ denotes the ratio of the total receptor concentration divided by the antagonist bound receptor concentration that generates the half-maximal antagonist-dependent cAMP synthesis (i.e. k_0 equals 0.5 * k_{0max}), R_{tot} denotes the total receptor concentration, k_{0max} denotes the maximal value of k_0 . | Parameter (unit) | Value | RSE | |---|---------|-------| | k _{off} Bromperidol (min ⁻¹) | 0.235* | | | k _{off} Clozapine (min ⁻¹) | 3.08* | | | k _{off} Domperidone (min ⁻¹) | 0.0322* | | | k _{off} JNJ-39269646 (min ⁻¹) | 10.7* | | | k _{off} JNJ-37822681 (min ⁻¹) | 0.573* | | | k _{off} Haloperidol (min ⁻¹) | 0.269* | | | k _{off} Nemonapride (min ⁻¹) | 0.0326* | | | k _{off} Olazapine (min ⁻¹) | 0.600* | | | k _{off} Paliperidone (min ⁻¹) | 0.211* | | | k _{off} Pimozide (min ⁻¹) | 0.0042* | | | k _{off} Quetiapine (min ⁻¹) | 1.01* | | | k _{off} Raclopride (min ⁻¹) | 0.0358* | | | k _{off} Remoxipride (min ⁻¹) | 1.89* | | | k _{off} Risperidone (min ⁻¹) | 0.199* | | | k _{off} Sertindole (min ⁻¹) | 0.141* | | | k _{off} Spiperone (min ⁻¹) | 0.0582* | | | k _{off} Ziprasidone (min ⁻¹) | 0.1* | | | K _D Bromperidol (nM) | 2.04 | 2% | | K _D Clozapine (nM) | 440 | 2.10% | | K _D Domperidone (nM) | 1.72 | 2.10% | | K _D JNJ-39269646 (nM) | 104 | 1.90% | | K _D JNJ-37822681 (nM) | 19.5 | 1.90% | | K _D Haloperidol (nM) | 1.72 | 2.40% | | K _D Nemonapride (nM) | 0.454 | 2.20% | | K _D Olazapine (nM) | 22.7 | 2.30% | | K _D Paliperidone (nM) | 1.61 | 2.40% | | K _D Pimozide (nM) | 291 | 2.80% | | K _D Quetiapine (nM) | 942 | 2.20% | | K _D Raclopride (nM) | 8.29 | 2.20% | | K _D Remoxipride (nM) | 118 | 2.70% | | K _D Risperidone (nM) | 10.5 | 4.60% | | K _D Sertindole (nM) | 6.89 | 2% | | K _D Spiperone (nM) | 0.19 | 2.50% | | K _D Ziprasidone (nM) | 3.56 | 1.80% | | K _D Dopamine (nM) | 10.3 | 3.90% | | k _{off} Dopamine (min ⁻¹) | 1.69* | | | R _{tot} [D ₂ -Receptor concentration] (nM) | 1.74 | 1.30% | | k _{0max} : Maximum cAMP synthesis induced by inverse agonism AU (min ⁻¹) | 20.5 | 0.50% | | k1: Baseline cAMP synthesis (AU min ⁻¹) 4.12 0.80% k2: cAMP degradation independent from active PDE (min ⁻¹) 0.0334 10.80% k3: cAMP degradation by active PDE (nM ⁻¹ min ⁻¹) 0.00882 0.20% k4: active PDE synthesis (min ⁻¹) 0.0005* DAFR ₅₀ Dopamine 2.25 2.40% Hill coefficient 1.77 0.40% LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ Haloperidol 0.699 0.50% | |---| | k3: cAMP degradation by active PDE (nM⁻¹ min⁻¹) 0.00882 0.20% k4: active PDE synthesis (min⁻¹) 0.0005* k5: active PDE degradation (min⁻¹) 0.0005* DAFR50 Dopamine 2.25 2.40% Hill coefficient 1.77 0.40% LFR50 Bromperidol 1.54 0.60% LFR50 Clozapine 0.504 0.70% LFR50 Domperidone 1.71 0.60% LFR50 JNJ-39269646 0.856 0.50% LFR50 JNJ-37822681 0.823 0.40% LFR50 Haloperidol 0.699 0.50% | | k ₄ : active PDE synthesis (min ⁻¹) 0.00882a k ₅ : active PDE degradation (min ⁻¹) 0.0005* DAFR ₅₀ Dopamine 2.25 2.40% Hill coefficient 1.77 0.40% LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | k ₅ : active PDE degradation (min ⁻¹) 0.0005* DAFR ₅₀ Dopamine 2.25 2.40% Hill coefficient 1.77 0.40% LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | DAFR ₅₀ Dopamine 2.25 2.40% Hill coefficient 1.77 0.40% LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | Hill coefficient 1.77 0.40% LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ Bromperidol 1.54 0.60% LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ Clozapine 0.504 0.70% LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ Domperidone 1.71 0.60% LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ JNJ-39269646 0.856 0.50% LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ JNJ-37822681 0.823 0.40% LFR ₅₀ Haloperidol 0.699 0.50% | | LFR ₅₀ Haloperidol 0.699 0.50% | | • | | | | LFR ₅₀ Nemonapride 2.47 1.10% | | LFR ₅₀ Olazapine 0.628 0.60% | | LFR ₅₀ Paliperidone 0.657 0.50% | | LFR ₅₀ Pimozide 618 1.90% | | LFR ₅₀ Quetiapine 0.827 0.90% | | LFR ₅₀ Raclopride 2.68 1.20% | | LFR ₅₀ Remoxipride 1.95 1.40% | | LFR ₅₀ Risperidone 5.37 3.60% | | LFR ₅₀ Sertindole 1.02 0.50% | | LFR ₅₀ Spiperone 1.56 0.60% | | LFR ₅₀ Ziprasidone 0.959 0.40% | | Receptor Turnover (min ⁻¹) 0.238 2.20% | | Proportional error 0.01 0.30% | $[\]overline{\ }^a\,k_4$ was set to have the same value as $k_3.$